Математическая модель измерительной системы
, и (5.12), выражение (5.11) можно представить в виде :
(5.13).
Подставив (5.13) в (5.9) получим
(5.14).
Выражение (5.14) описывает пространственное распределение комп-лексных амплитуд светового поля в плоскости х3у3 спектрального анализа и содержит ряд взаимонезависимых квадратичных фазовых сомножителя, по-ле в плоскости х3у3 является фурье-образом поля в плоскости х1у1 за входным транспарантом с пространственными частотами и , равными , и (5.15)
Подинтегральный квадратичный сомножитель в выражении (5.14) для распределения поля в плоскости х3у3 анализа
(5.16), при
(5.17)
Решив уравнение (5.17) относительно определим
(5.18).
Полученное уравнение (5.18) представляет собой известное условие Гауса о фокусировке оптической системы, согласно
(5.19)
Таким образом, только при условии фокусировки оптической системы, представленной на рис.2, в ней осуществляется спектральное преобразо-вание Фурье, формируемое в плоскости х3у3, над сигналом , поме-щенным во входной плоскости х1у1. Однако, фурье-образ сигнала содержит квадратичную модуляцию фазы волны из-за наличия фазового сомно-жителя, стоящего перед интегралом в выражении (5.14). Наличие фазовой модуляции фурье-образа приводит к тому, что при регистрации его методами голографии в результирующей интерферограмме возникают дополнительные аберрации, значительно влияющие на его качество. Эта модуляция также имеет важное значение и не может быть опущена в случае дальнейших преобразований деталями оптической системы фурье-образа сигнала . Однако, квадратичная модуляция фазы фурье-образа может быть устранена при соответствующем выборе геометри-ческих параметров оптической системы, т.е.
(5.20) при (5.21).
Решив уравнение (5.21) относительно находим
(5.22) при =0, либо .
Дополнительно
Шероховатость поверхности и её изображение на чертежах
КОНСТРУКЦИЯ
(объект производства)
ТЕХНОЛОГИЯ
(производственные
процессы)
↔
↔
↔
↑ ↑ ↑ ↑
↑ ↑ ↑
...
Численная модель эволюции плавающих на сферической мантии и взаимодействующих континентов
С развитием методов
численного моделирования глобальных геодинамических процессов появилась
возможность исследовать механизм дрейфа континентов с периодическим
объединением их в суперконтиненты типа Пангеи. В предыдущих работах авторов
разработан метод численного решения системы уравнений переноса ...