Структурная самоорганизация Вселенной

Предполагается, что в расширяющейся Вселенной возни­кают и развиваются случайные уплотнения вещества. Силы тяготения внутри уплотнения проявляют себя заметнее, чем вне него. Поэтому, несмотря на общее расширение Вселенной, вещество в уплотнениях притормаживается, и его плотность постепенно нарастает. Появление таких уплотнений и стало началом рождения крупномасштабных структур во Вселенной. Согласно расчетам, из этих сгущений должны были возникать плоские образования, напоминающие блины.

Сжатие водородно-гелиевой плазмы в «блины» неизбежно приводило к значительному повышению их температуры. В ко­нечном счете, сжатие «блина» порождало его неустойчивость, и он распадался на более мелкие подсистемы, которые, возможно, стали зародышами галактик. Подсистемы, в свою очередь, дос­тигали состояния неустойчивости и распадались на более мел­кие уплотнения, ставшие зародышами звезд первого поколения.

Образование разномасштабных структур во Вселенной от­крыло возможность для новых усложнений вещества. Важней­шим узловым моментом стало образование всей совокупности элементов таблицы Менделеева. Они появились в звездах в хо­де процессов звездного нуклеосинтеза.

Согласно современным представлениям, присутствующие в межзвездной среде тяжелые элементы изготовлены в звездах типа красных гигантов. Желтые карлики типа нашего Солнца поддерживают свое состояние главным образом в результате термоядерной реакции, превращающей водород в гелий. Красные гиганты обладают массой, в несколько раз превы­шающей солнечную, водород в них выгорает очень быстро. В центре, где сосредоточен гелий, их температура достигает не­скольких сотен миллионов градусов, что оказывается доста­точным для протекания реакций углеродного цикла - слияния ядер гелия в углерод. Ядро углерода, в свою очередь, может присоединить еще одно ядро гелия и образовать ядро кисло­рода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается, и температура в нем поднимается до 3 - 10 млрд. градусов. В таких условиях реакции объединения продолжа­ются вплоть до образования ядер железа.

Ядро железа - самое устойчивое во всей последовательно­сти химических элементов. Здесь проходит граница, выше ко­торой нуклеосинтез перестает быть источником выделяющейся энергии (как это было в предыдущих реакциях) и протекание реакций с образованием еще более тяжелых ядер требует энер­гетических затрат.

Разработана теория образования в недрах красных гиган­тов элементов от железа до висмута - в процессах медленного захвата нейтронов. Образование же наиболее тяжелых ядер, замыкающих таблицу Менделеева, предположительно проис­ходило в оболочках взрывающихся звезд или при прохожде­нии сильной ударной волны, созданной взрывом сверхновой звезды, через гелиевую оболочку этой звезды с массой около 25 солнечных масс.

Красные гиганты быстро расходуют запас гелия, у них ко­роткий жизненный цикл порядка десятка миллионов лет. За время своего активного существования красный гигант отдает в межзвездную среду ежегодно не менее 10-4 –10-5 масс Солн­ца, а в конце существования он с взрывом сбрасывает внеш­нюю оболочку вместе с накопившимися в ней «шлаками» - хи­мическими элементами, результатами деятельности циклов нуклеосинтеза. Поэтому межзвездная среда сравнительно бы­стро обретает все известные на сегодняшний день химические элементы тяжелее гелия. Звезды следующих поколений, в том числе и Солнце, с самого начала содержат в своем составе и в составе окружающего их газопылевого облака примесь тяже­лых элементов.

Появление во Вселенной всей гаммы химических элементов открыло новый этап в развитии вещества и в формировании его структур. Так, в местах нахождения разнообразных хими­ческих элементов протекают процессы их объединения в моле­кулы, сложность которых может нарастать до очень высоких уровней. Причину, заставляющую атомы объединяться в мо­лекулы, наука знает достаточно хорошо. В основе этих процес­сов - химические силы, за которыми скрывается одна из фун­даментальных сил природы - электромагнитное взаимодейст­вие. Процессы соединения атомов в молекулы широко распро­странены во Вселенной. В межзвездной среде, где концентра­ция вещества ничтожно мала, тем не менее, обнаруживаются молекулы водорода. Там же встречаются мельчайшие пылин­ки, в их основе - кристаллики льда или углерода с примесью гидратов разных соединений. Молекулярный водород вместе с гелием образует газовые межзвездные облака. Скопление газов вместе с пылинками формирует газопылевые облака. Но са­мое интересное, с чем столкнулись наблюдатели, - это неожиданно большое присутствие в космосе разнообразных орга­нических молекул, вплоть до таких сложных, как молекулы некоторых аминокислот. В межзвездных облаках насчитали более 50 видов органических молекул. Еще удивительнее, что органические молекулы находят во внешних оболочках неко­торых не очень горячих звезд и в образованиях, температура которых незначительно отличается от абсолютного нуля. Так что синтез молекул, в том числе и органических, - распростра­ненное и вполне обыденное явление в космосе. Правда, наука пока не может с уверенностью назвать конкретные пути проте­кания такого синтеза.

Перейти на страницу: 1 2

Дополнительно

Австрийская школа и теория предельной полезности
“Австрийская школа” возникла в 70-х годах 19-в., которые характеризовались дальнейшим ростом капитализма и обострением его противоречий. На основе растущей концентрации производства в 70-х годах начали возникать первые кап. монополии. Австрийская школа оспаривала учение Маркса, и в авангарде этог ...

Численная модель эволюции плавающих на сферической мантии и взаимодействующих континентов
С развитием методов численного моделирования глобальных геодинамических процессов появилась возможность исследовать механизм дрейфа континентов с периодическим объединением их в суперконтиненты типа Пангеи. В предыдущих работах авторов разработан метод численного решения системы уравнений переноса ...

Меню сайта