Генная инженерия

Для экспрессии в бактериальной клетке гена

из клетки

животного необходимо, чтобы в клетку была введена молекула ДНК с последовательностью нуклеотидов, коди­рующей белок, из которой интроны уже удалены; иными словами, нужна молекула ДНК, синтезированная на соот­ветствующей мРНК обратной транскриптазой. Более того, регуляторные сигналы должны быть похожи на таковые бактериальной клетки. Наконец, для получения нужного белка в достаточных количествах бывают необходимы дополнительные изменения бактериальной клетки.[2]

Методы введения ДНК в бактериальные клетки

Для введения ДНК (генов) в клетки бактерий исполь­зуются два метода. Первый основан на применении плазмиды в качестве вектора.

В начале 1950-х гг., вскоре после открытия Ледербергом процесса конъюгации Escherichia coli, было установ­лено, что типы «спаривания» клеток бактерий обусловле­ны генетически и что генетическая информация перено­сится из клеток мужского типа в клетки женского типа, или реципиентные клетки. Способность служить донорными клетками (или фактор плодовитости F) передавалась при конъюгации значительно чаще, чем любой другой генетический признак. F-фактор передавался также неза­висимо от любого другого известного гена донорной клетки. Ледерберг подметил, что F-фактор напоминает внехромосомные генетические элементы, имеющиеся в цитоплазме высших организмов. Это наблюдение позволи­ло ему в 1952 г. присвоить подобным внехромосомным генетическим системам общее название—плазмиды.

В 1953 г. Хэйс, который в то время работал в больнице Хаммерсмита в Лондоне, установил, что в определенных условиях F-фактор может оказаться сцепленным с генети­ческими маркерами и индуцировать последовательный их перенос в ходе конъюгации. F-фактор присоединяется к бактериальной хромосоме в специфическом участке (сайте); именно в этой точке хромосома разрывается при конъюгации и начинается ее перенос в реципиентную клетку. F-фактор способен также отделяться от хромосо­мы, захватывая подчас небольшие фрагменты хромосомы; поэтому его можно рассматривать как виехромосомный элемент, который иногда интегрирует в хромосому.

Жакоб и Вольман, сотрудники Института Пастера в Париже, отметили сходство в поведении F-фактора, уме­ренного бактериофага X, и другой плазмиды—Со1Е1 (которая кодирует колицин—белок, убивающий клетки Е. coli ). Для обозначения генетического элемента, который может реплицироваться либо в свободном состоянии, либо соединившись с бактериальной хромосомой, они предло­жили новый термин—«эписома».

В 1959 г. в Японии при исследовании больных бактери­альной дизентерией, которые не поддавались лечению обычно эффективными антибиотиками, было сделано за­мечательное открытие. В клетках патогенных бактерий (Shigella dysenteriae) были найдены гены, придававшие им устойчивость одновременно к нескольким антибиотикам; такая устойчивость передавалась другим кишечным бакте­риям во многом подобно тому, как передается F-фактор. Эти факторы устойчивости (называемые R-факторами) обладали сходством с F-фактором; так, они были способ­ны индуцировать передачу самих себя от клетки к клетке при конъюгации. Позже удалось показать, что некоторые из них содержат последовательности нуклеотидов, близ­кие к таковым F-фактора.

В начале 1960-х гг. Новик обнаружил подобные факто­ры устойчивости у стафилококков; они содержали ген, кодирующий фермент пенициллин-β-лактамазу, или пенициллиназу; последняя расщепляет пенициллин и таким образом обеспечивает устойчивость к этому антибиотику. R-факторы стафилококков, по-видимому, не способны обеспечивать передачу самих себя посредством конъюга­ции и переносятся лишь пассивно в процессе трансдукции, т. е. при их встраивании в ДНК бактериофага. Это открытие указывало на наличие нескольких R-факторов в клетках кишечных бактерий.

К середине 1960-х гг. стало очевидным, что большин­ство R-факторов кишечных бактерий и стафилококков (как и плазмида Со1Е1) отличаются от F-фактора и фага λ [И.С.1] тем, что остаются внехромосомными элементами;

Перейти на страницу: 1 2 3 4 5 6 7 8 9

Дополнительно

Новая фундаментальная физическая константа, лежащая в основе постоянной Планка
Открыта новая фундаментальная физическая константа hu “фундаментальный квант действия” [11 - 15]. Ее значение равно [11,12,23]: hu=7,69558071(63)•10-37Дж с. На основе классических представлений для электромагнетизма получены еще две физиче ...

Технология производства мяса гусей
Животноводство - вторая важнейшая отрасль сельского хозяйства. Она обеспечивает население высокобелковыми и диетическими продуктами питания, а ряд отраслей промыш­ленности - сырьем. Особенность ее в том, что энергоемкость продукции животноводства (затраты энергии на одну кало­рию продукции) в 15-2 ...

Меню сайта