Требования, предъявляемые к конструкции
Ведущее колесо наматывает гусеничную цепь, обеспечивая движение трактора. К ведущему колесу предъявляются следующие требования:
надежное зацепление с гусеницей (независимо от её износа) как в ведущем, так и в тормозном режиме. Это требование соблюдается путем правильного выбора геометрии зацепления. Оно легко выполняется в гусеницах, шаг которых в процессе эксплуатации не изменяется или изменяется незначительно [8];
высокая износостойкость зубьев. Обеспечивается геометрией зацепления, подбором износостойких материалов для зубчатых венцов и технологическими мероприятиями по повышению их поверхностной твёрдости;
самоочистка от пыли, грязи и снега.
В данной работе рассматривается возможность создания на базе гусеничного трактора (прототип — трактор ВТ–100, выпускаемый ВГТЗ) варианта сельскохозяйственного трактора общего назначения с подрессоренным ведущим колесом.
Ведущее колесо опускается на землю, тем самым оно выполняет две роли: ведущую и опорную [15, 16].
Опуская ведущее колесо на грунт, получаем следующие преимущества:
увеличение КПД;
уменьшение удельного давления на почву;
уменьшение буксования;
увеличение опорной длины гусеницы;
почвосбережение.
Однако простое увеличение продольной базы трактора путём опускания ведущего колеса на грунт ведёт к увеличению момента сопротивления повороту. А самое главное, на ведущее колесо теперь будут действовать ничем не компенсируемые силы, которые приведут к выходу из строя конечной передачи. Поэтому ведущее колесо необходимо подрессоривать.
3.2 Описание конструкции и принципа работы ведущего колеса с внутренним подрессориванием
Предложенное в данной работе ведущее колесо состоит из (см. рисунок 3.1):
вала конечной передачи;
ведущей ступицы;
нескольких ведомых ступиц;
зубчатого венца;
системы подрессоривания;
дополнительной системы подрессоривания;
втулок-упоров.
Предлагаемая к защите конструкция системы подрессоривания состоит из четного количества упругих элементов треугольной формы 5 расположенными между ведущей 2 и ведомыми 3 ступицами колеса с одной стороны и зубчатым венцом 4 — с другой. Упругие элементы верхним концом шарнирно закреплены на зубчатом венце. Снизу они также шарнирно крепятся на ведущей ступице и попарно закрепляются с возможность совершать вращательное движение в плоскости колеса на ведомых ступицах. Следовательно, количество ведомых ступиц 4 равно числу упругих элементов, размещенных на колесе, делённое на два.
Упругие элементы 6 числом равные числу упругих элементов 5 и расположенные в плоскости, параллельной оси вращения колеса, установлены для компенсирования действия сил боковой нагрузки Данные элементы могут быть заменены защитным кожухом, напрямую соединяющем ведущую ступицу 2 с зубчатым ободом 4, и также выполняющему роль компенсатора боковых возмущений.
Колесо работает следующим образом (рисунок 3.2).
Крутящий момент независимо от направления движения передаётся от ведущего вала конечной передачи 1 через ведущую ступицу 2 на упругий элемент 5, и через него на зубчатый венец 4 и, вследствие взаимодействия последнего с гусеницей и почвой, реализуется в тяговое усилие колеса. Передача крутящего момента осуществляется за счет того, что за счёт того, что с одной ведомой ступицей 3 связаны два упругих элемента, расположенных противоположно друг другу относительно оси ведущего колеса, которые создают усилие направленные в центр колеса, благодаря чему ведомая ступица 3 остаётся неподвижной и каждый из упругих элементов 5 работает как жесткая спица. При наезде на неровность (см. рисунок 3.2) зубчатый обод перемещается вверх, упругий элемент 5 проворачивается вокруг оси шарнира нижней опоры с ведущей ступицей 2 и вокруг оси шарнира верхней опоры с зубчатым ободом 4. Ведомая ступица при этом совершает плоско-параллельное перемещение по направляющим упора-втулки 7 в плоскости, перпендикулярной продольной оси вала, чем и обеспечивается свободный ход зубчатого обода. Подрессоривание при этом реализуется за счёт упругой деформации элементов 5 в плоскости, параллельной продольной оси вала. Деформация каждого из выше обозначенных элементов тем больше, чем ближе элемент к вертикальному положению, то есть своего максимального значения достигает в момент, когда шарниры крепления упругого элемента к зубчатому ободу и ведущей ступице расположены на одной линии, строго перпендикулярной поверхности качения. Исходя из вышесказанного следует, что динамические возмущения воспринимают все упругие элементы 5 конструкции, а в случае «открытого» исполнения к ним также присоединяются и упругие элементы 6. Гашение колебаний осуществляется за счет сил трения в шарнирах креплений упругих элементов 5 к другим деталям конструкции, сил трения между ведомыми ступицами 3 и упором-втулкой 7, а также за счет сил упругости, возникающих в элементах 5.
Дополнительно
Эволюция энергетических процессов у эубактерий
В главах 11 и 12 были
обсуждены проблемы возникновения первичной клетки из гипотетической протоклетки
и последующего пути прогрессивной эволюции первичной клетки. Как было
обнаружено в 70-х гг., на раннем этапе этого пути могло произойти выделение
трех основных ветвей, каждая из которых самостояте ...
Технология выращивания сахарной свеклы в Сумской области
Сахарная свекла - важная техническая культура, корнеплод которой
достигает 500г и больше, содержит 19-22% сахара и более, является основным
сырьем для сахарной промышленности. Кроме сахара, в процессе переработки
корнеплодов получают ценные дополнительные продукты - мелясу и жом. Ботва
сахарной св ...