Методы теоретической популяционной генетики
Отметим, что подобные уравнения используются в модели квазивидов [5], см Лекция 2
Пренебрегая мутациями, мы можем анализировать динамику генов в популяции посредством уравнений:
dPi /dt = Wi Pi - <W> Pi , i = 1, ., K. (4)
Используя (1), (2), (4), можно получить (при условии, что величины Wij постоянны), что
скорость роста средней приспособленности пропорциональна дисперсии приспособленности V = S i Pi ( Wi - <W>)2 [1,3]:
d<W>/dt = 2 S i Pi ( Wi - <W>)2. (5)
Таким образом, средняя приспособленность – неубывающая величина. В соответствии с (4), (5), величина L = Wmax - <W> есть функция Ляпунова для рассматриваемой динамической системы (Wmax – локальный или глобальный максимум приспособленности, в окрестности которого рассматривается динамика популяции) [3]. Это означает, что величина L всегда уменьшается до тех пор, пока не будет достигнуто равновесное состояние (dPi /dt = 0).
Уравнение (5) характеризует фундаментальную теорему естественного отбора (Р.Фишер,1930), которая в нашем случае может быть сформулирована следующим образом [3]:
"В достаточно большой панмиктической популяции, наследование в которой определяется одним n-аллельным геном, а давление отбора, задаваемое Wij , постоянно, средняя приспособленность популяции возрастает, достигая стационарного значения в одном из состояний генетического равновесия. Скорость изменения средней приспособленности пропорциональна аддитивной генной дисперсии и обращается в нуль при достижении генетического равновесия."
Описанная модель – простой пример модели, использующей детерминистический подход. В рамках этого подхода был разработан широкий спектр аналогичных моделей, которые описывают различные особенности динамики генных распределений, например, учитывают несколько генных локусов, возраст особей, число мужских и женских особей, пространственную миграцию особей, подразделение популяции на субпопуляции и т.п. Многие из моделей и расчетов были предназначены для интерпретации конкретных генетических экспериментальных данных [1,3,4] .
Стохастические модели
Детерминистические модели позволяют эффективно описывать динамику распределения генов в эволюционирующих популяциях. Однако эти модели основаны на предположении бесконечного размера популяции, которое является слишком сильным для многих реальных случаев. Чтобы преодолеть это ограничение, были разработаны вероятностные методы теоретической популяционной генетики [1,3,4,6-8]. Эти методы включают анализ с помощью цепей Маркова (в частности, метод производящих функций) [4,7], и диффузионные [1,3,4,6,8] методы.
Ниже мы кратко рассмотрим основные уравнения и характерные примеры применения диффузионного метода. Этот метод достаточно нетривиален и его применение приводит к достаточно содержательным результатам.
Прямое и обратное уравнения Колмогорова
Рассмотрим популяцию диплоидных организмов с двумя аллелями A1 и A2 в некотором локусе. Численность популяции n предполагается конечной, но достаточно большой, так что частоты гена могут быть описаны непрерывными величинами. Мы также предполагаем, что численность популяции n постоянна.
Введем функцию j = j (X,t|P,0) , которая характеризует плотность вероятности того, что частота гена A1 равна X в момент времени t при условии, что начальная частота (в момент t = 0) была равна P. В предположении малого изменения частот генов за одно поколение, динамика популяции может быть описана приближенно следующими дифференциальными уравнениями в частных производных [1,3,4,8]:
¶ j /¶ t = - ¶ (Md X j )/¶ X + (1/2)¶ 2(VdX j )/¶ X 2 , (6)
¶ j/¶ t = Md P ¶ j /¶ P + (1/2)Vd P ¶ 2j/¶ P 2 , (7)
где Md X , Md P и VdX , Vd P – средние значения и дисперсии изменения частот X, P за одно поколение, соответственно; единица времени равна длительности одного поколения. Уравнение (6) есть прямое уравнение Колмогорова. (В физике это уравнение называют уравнением Фоккера-Планка), уравнение (7) – обратное уравнение Колмогорова.
Дополнительно
Автоматизированное проектирование станочной оснастки
1.1.
СТАНОЧНЫЕ ПРИСПОСОБЛЕНИЯ .
КЛАССИФИКАЦИЯ , ВИДЫ .
1.1.1. Станочные
приспособления .
Основную группу
технологической оснастки составляют приспособления механосборочного
производства. Приспособлениями в машиностроении называют вспомогательные
устройства к технологич ...
Детские дошкольные учреждения – сады-ясли
Двадцатое столетие для
рядя стран Европы характерно процессами интенсивной урбанизации в связи с
индустриализацией производства и соответствующим размахом градостроительной
деятельности.
В нашей стране процесс
урбанизации привел к исключительно острой проблеме обеспечения жилищем и
общественны ...