Вариации в стиле ретро.
Молодая, вновь образующаяся кора стала с жадностью ее поглощать. И скорость, и объем гидратации коры резко увеличились. Превращения оливина приняли колос- J сальные размеры.
Но с такой же скоростью стал истребляться и углекислый газ. О том сегодня напоминают мощнейшие карбонатные отложения тех эпох. С его потерей в атмосфере редел тепловой экран, А так как Солнце все еще светило далеко не в полную силу, то обогрев Земли становился все хуже.
Между тем углекислый газ продолжал убывать из атмосферы. Вот его уже там в 10 раз меньше, в 1бО . От парникового эффекта практически не осталось ничего. Холод окутал планету. Пришло время, когда тяжелая стужа сковала большие пространства на поверхности Земли. Наступил первый в ее истории ледниковый период.
Это произошло 2,4 млрд. лет назад. И продолжалось достаточно долго. Лишь спустя 300 млн. лет прибыль воды в акваториях планеты (с расширяющихся «фабрик Хесса») снова превысила расходы на гидратацию коры. Уровень океана впервые начал подниматься над вершинами срединно-океанического хребта.
Преобразование оливина в рифтах, видимо, стабилизировалось на какое-то время, так как содержание углекислого газа в воде и атмосфере перестало падать. Но, достигнув минимума, оно не могло не стать прессом давившим на биосферу. Недостаток углекислого газа должен был угнетающе действовать на синезеленые водоросли и поощрять те организмы, которые находили другие «средства существования» или рациональнее использовали имеющиеся.
Вот они условия, вынудившие появление чего-то вроде эукариот (клеток с ядрами), то есть организмов, «применивших» более эффективный механизм извлечения энергии из синтезируемой глюкозы, раз в 20 более эффективный! И близка, совсем близка та эпоха (она началась, как это ныне установлено, 1,5 млрд. лет назад), когда фактически появились эукариоты. При этом, разумеется, не исключено, что более ранние находки у науки еще впереди.
Однако погодите, ведь отличие эукариот от всех предшествовавших организмов — это в первую очередь кислородное дыхание? Да. Но водоросли-эукариоты не перестали потреблять углекислый газ, просто начали делать это гораздо экономнее благодаря кислороду. Важно понять, что от расточительности в данном случае пришлось отказаться не от хорошей жизни. Заставила очередная ступень эволюции Земли.
Для той же ступени, кстати сказать, характерны и изменения в судьбе кислорода. Тут нам надо ненадолго вернуться назад к тем ранним предбиологическим временам, когда в мантии еще было много свободного железа и оно вместе с мантийным веществом постоянно поднималось к поверхности Земли в древнейших рифтовых зонах.
Именно это свободное железо, с большой готовностью соединяясь с кислородом, изымало его из атмосферы и тогда, когда этот газ появлялся от разложения солнечным светом водяных паров, и позже, с началом фотосинтеза цианобактерий. Ведь вначале примерно 13 процентов мантийного вещества приходилось на свободное железо, а 2,6—2,5 млрд. лет назад — около 7—8 процентов. Так что кислород, вырабатываемый тогда синезелеными водорослями, никуда, как видите, не исчезал. Просто у него был ненасытный потребитель. Спустя 0,5 млрд. лет свободного железа в. мантии Земли убыло до б процентов. Но оно все еще оставалось мощным поглотителем кислорода. Это происходило как бы в два этапа. Сначала в рифтах, в горниле горячих и бурных реакций железо окислялось до двухрадентного-состояния. Такой окисел хорошо растворяется в воде, и потому его быстро выносило в открытый океан. Там кислород делал железо уже трехвалентным. А оно, как известно, нерастворимо в воде и выпадает в осадок, похищая колоссальные массы кислорода. Они поныне заключены в крупнейших залежах железных руд, образовавшихся в те эпохи,
Дополнительно
Конструкции и технология изготовления электротехнических изделий
Настоящее методическое
пособие предназначено для студентов Института Электротехники, выполняющих
курсовые и дипломный проекты (КП и ДП), и призвано оказать им помощь по
выполнению конструкторско-технологической части проектов.
В связи с введением Единой
системы конструкторской документации (ЕСК ...
Развитие представлений о природе тепловых явлений и свойств макросистем
Вокруг нас происходят явления, внешне весьма
косвенно связанные с механическим движением. Это явления, наблюдаемые при
изменении температуры тел, представляющих собой макросистемы, или при переходе
их из одного состояния (например, жидкого) в другое (твердое либо
газообразное). Такие явления наз ...