Неизлучающий атом Резерфорда
В такой постановке задача имеет простой и однозначный ответ: следовательно, объект Б тоже излучает поле, и такое, что вдали от системы эти два поля, накладываясь друг на друга и суммируясь, всюду обращаются в нуль. И неважно, каковы эти излучения, один ли “электрон” в модели или их много, вращаются они или колеблются, или излучают, вообще не двигаясь, – это неизвестный объект, заведомо излучающий. Динамические поля излучений погашаются в пространстве за пределами модели точно так же, как статические: поле “электронов” – полем “ядра”.
Очевидно, оба периодических поля – объектов А и Б - должны вдали от системы ("в бесконечности") становиться точно равными друг другу и следовать там в противоположных фазах. Тогда векторы полей в каждой точке дальнего пространства равны и направлены встречно, их сумма вдали от системы равна нулю, энергия из системы не уносится, источники излучений не теряют своей энергии, потому излучения не прекращаются. Равенство полей вблизи и внутри системы не требуется, там они могут различаться, и тогда динамическое поле остается лишь вблизи объектов, энергию содержит, но не уносит ее в пространство. В предыдущем разделе было показано, что возможны неизлучающие пары излучателей, расположенных не только один внутри другого, как в атоме, но и пространственно друг от друга отдаленных.
Ответ на вопрос в общей форме относится также к моделям молекул и тел, как бы разделенным на произвольные части А и Б. Части излучают, целое не всегда. Не излучающий в пространство источник излучения может быть произвольно поделен на два, излучающих в дальнее пространство равно и противофазно.
Итак, вопрос решен, компетенция теории поля исчерпана, закончившись у границ объектов. Дееспособность теории внутри атома и до таких границ доказана. Вопрос о том, почему и как излучает ядро, относится уже к теории ядра, но не к теории поля, точнее, для нее не обязателен. Не было причин объявлять ее несостоятельной или не применимой к микромиру.
На этом можно бы и закончить, но многим людям кажется, что здесь классическая физика снова попадает в тупик, не умея ответить на новый, более сложный вопрос: каким же чудесным образом излучение ядра всегда становится точно равным излучению электронов при любых устойчивых орбитах и погашает его полностью? Однако ответы есть.
Естественно, сначала нужно составить "классическое" представление об атомном ядре и отыскать предметы, которые могли бы служить его макромоделью, составлять вместе с бегущими вокруг них зарядами самоорганизующиеся системы с подходящими свойствами.
Любой реальный предмет, если вокруг него вращать заряд, будет хоть как-нибудь излучать, но, как правило, – ничтожно. Если же в этом предмете возможны колебания, и частота вращения заряда попадает с ними в резонанс, то колебания будут “раскачиваться” до больших амплитуд, излучения станут существенными, особенно при отсутствии внутренних потерь энергии. Видимо, первичной моделью атомного ядра могла бы служить какая-то колебательная система. Например, такая.
Движущийся по окружности заряд излучает почти так же, как два элементарных точечных электрических осциллятора (вибратора Герца), которые перпендикулярно ориентированы и колеблются со сдвигом фаз 90 градусов. Но несколько неточно, т.к. заряд на орбите – лишь в первом приближении точечный излучатель. Однако если такую пару вибраторов установить в центр вращения и присоединить к колебательным контурам, настроенным на частоту вращения заряда, то мощность излучения из модели уменьшится порядка на 3 - 4. И сложится это само собой, автоматически.
Дополнительно
Развитие атомной энергетики в Украине
Наше время называю атомным не только и не столько потому,
что оно было ознаменовано гениальными открытиями в области строения атома, а и
потому, что человек нашёл полезное применение фантастически огромной энергии,
источником которой стал неизмеримо малый атом.
Ионизирующее
излучение (атомная р ...
Солнце и его влияние на землю
Каждому
наверняка известно, что на Солнце нельзя смотреть невооруженным глазом, а тем
более в телескоп без специальных, очень темных светофильтров или других
устройств, ослабляющих свет. Пренебрегая этим советом, наблюдатель рискует
получить сильнейший ожог глаза. Самый простой способ рассматриват ...