Общие свойства черных дыр
Несферический гравитационный коллапс. При сжатии сферически-симметричного тела гравитационное поле вне этого тела остается неизменным (статическим). Это утверждение в общей теории относительности известно как теорема Биркгофа. При коллапсе вращающихся тел и тел несферической формы гравитационное поле оказывается нестационарным — происходит излучение гравитационных волн. Черная дыра, возникающая в результате этого коллапса, также нестационарна, т. е. ее форма и размер зависят от времени. Часть гравитационных волн уходит на бесконечность, другая часть поглощается черной дырой, что приводит к увеличению ее энергии. Если черная дыра предоставлена самой себе, то с течением времени процесс излучения гравитационных волн прекращается и черная дыра становится стационарной.
Замечательным оказывается то, что всякая черная дыра, переходя в стационарное состояние, обязательно
превращается в керровскую или в случае, если тело обладало электрическим зарядом, керр-ньюмановскую черную дыру, свойства которой однозначно определяются значениями трех параметров: М — массы, J — углового момента и Q — заряда. После образования стационарной черной дыры все особенности внутреннего строения сколлапсировавшего тела, наличие в нем источников различных полей, кроме электромагнитного, связанного с зарядом Q,становятся недоступными для наблюдения. Подобные черные дыры, обладающие одинаковыми значениями параметров М, J и Q, неотличимы друг от друга. Все остальные характеристики, которыми обладало коллапсирующее тело (такие, как мультипольные гравитационные и электромагнитные моменты, заряды, связанные с другими взаимодействиями (например, сильным и слабым и т. п.), забываются черной дырой.
Физическая причина этого состоит в следующем. Любое физическое поле, обладая энергией, притягивается черной дырой. Поэтому любой элемент объема с таким полем около черной дыры обладает весом. Связанные с полем натяжения проявляются в виде давления со стороны поля на поверхность объема, приводя к “выталкивающей силе”, аналогичной силе Архимеда. Физическое поле может находиться в равновесии около черной дыры, т. е. быть стационарным, если вес поля в любом элементе объема в точности компенсируется “выталкивающей силой”. Если вне черной дыры нет источников полей, то выполнение этого своеобразного “закона Архимеда” оказывается возможным только для таких конфигураций гравитационного и электромагнитного полей, которые отвечают случаю керр-ньюмановской черной дыры. Во всех остальных случаях элемент поля либо “всплывает”, либо “тонет”. После этого процесса перестройки поля, сопровождаемого излучением, черная дыра сохраняет только те характеристики, которые она не способна сбросить при излучении, — массу, угловой момент и электрический заряд.
Теорема Хокинга. Хотя детальное описание процесса перестройки поля и превращения черной дыры в стационарную представляет собой довольно сложную задачу, этот процесс подчиняется одной общей закономерности, установленной английским физиком С. Хокингом в 1972 г.: площадь поверхности черной дыры не может уменьшаться со временем (рис. 5). Соответствующая
Рис. 5. Возможные процессы с черными дырами. Иллюстрация к теореме Хокинга.
Плоскости t1, t2, t3 обозначают пространственные сечения в соответствующие моменты времени, S0(tl) — площадь черной дыры о в момент времени ti. Две черные дыры могут сливаться в одну, черные дыры могут возникать, площадь поверхности одиночной черной дыры возрастает со временем. Одна черная дыра не может распасться на две или более черных дыр. Теорема Хокинга утверждает, что общая площадь поверхностей черных дыр в момент ( является неубывающей функцией времени
теорема была доказана им при самых широких предположениях, среди которых наиболее существенным является предположение о положительности плотности энергии вещества и физических полей, с которыми взаимодействует черная дыра. Это предположение, безусловно справедливое в рамках классической физики, мо-
жет, однако, нарушаться при учете квантовых эффектов, Доказательство этой теоремы основано на том, что падение в черную дыру вещества и поля, плотность энергии которых положительна, приводит к возрастанию энергии черной дыры, а следовательно, и площади ее поверхности. Для невращающейся незаряженной черной дыры в этом легко убедиться, используя связь между массой М и площадью поверхности А : А = = 16pi(GM/c2)2, Обратный процесс извлечения вещества и энергии из-под горизонта событий невозможен.
Дополнительно
Система автоматического регулирования
Современная теория автоматического регулирования является
основной частью теории управления. Система автоматического регулирования
состоит из регулируемого объекта и элементов управления, которые воздействуют
на объект при изменении одной или нескольких регулируемых переменных. Под
влиянием входны ...
Расчет релаксационного генератора на ИОУ
Разработать и рассчитать
релаксационный генератор на ИОУ
(интегральной схеме операционного
усилителя) в соответствии с данными, представленными:
·
вид генератора - мультивибратор
·
режим работы – автоколебательный
·
период следования импульсов Т, мс – 0.09
· ...