Как обнаружить черную дыру?
Одиночные черные дыры. Как же увидеть черную ды-ру, возникшую при коллапсе звезды? Одиночную черную дыру можно обнаружить, только если она находится относительно недалеко от Солнца, поскольку светимость ее на два порядка слабее светимости Солнца.
Межзвездный газ, аккрецирующий на черную дыру, нагревается и может начать излучать. Основная часть излучения формируется вдали от черной дыры, поэтому по его свойствам трудно отличить черную дыру от одиночной нейтронной звезды, обладающим слабым магнитным полем или с диаграммой направленности излучения, препятствующей наблюдению ее как пульсара.
Черные дыры в двойных системах. Гораздо более простой представляется задача обнаружения черной дыры, если она образует двойную систему вместе с обычной звездой. Случай, когда одна из компонент двойной системы в результате более быстрой эволюция образует черную дыру еще при жизни своего менее массивного компаньона, является благоприятным для наблюдения по следующим причинам.
Во-первых, хотя сама черная дыра визуально не наблюдается, вращение видимой звезды вокруг общего центра масс приводит к периодическому изменению, связанному с эффектом Доплера, длин волн принимаемого излучения. Если массу видимой звезды найти, воспользовавшись известной зависимостью спектральных характеристик звезд от их массы, то, зная период вращения и максимальное значение проекции скорости видимой звезды на луч зрения наблюдателя, определяемые по характеристикам эффекта Доплера, можно вычислить минимальное значение массы невидимой компоненты. Если масса невидимой компоненты, определенная таким образом, окажется большой (например, порядка 5—10
Рис. 6. Аккреция на черную дыру в двойной системе. Сплошной стрелкой показано направление вращения аккреционного диска, пунктирной — вращения двойной системы относительно центра масс
солнечных масс), то это можно рассматривать как свидетельство того, что невидимая компонента является черной дырой, поскольку маловероятно для обычной звезды с такой большой массой остаться “невидимой”, а для звезд-малюток (белых карликов и нейтронных звезд) эти массы лежат вне допустимого предела их устойчивости. Предложение использовать “невидимость” в качестве, критерия при поиске черных дыр в двойных системах было высказано в начале 60-х гг. советскими астрофизиками Я. Б. Зельдовичем и О. X. Гусейновым. Однако среди звезд, отобранных по этому признаку, черную дыру, к сожалению, обнаружить не удалось.
Во-вторых, среди многочисленных двойных звезд существует довольно много тесных двойных систем, у которых расстояние между компонентами сравнимо с суммой радиусов звезд. Если черная дыра входит в состав такой системы, то скорость аккреции на нее значительно возрастает за счет вещества, перетекающего от обычной звезды и может достигнуть величины 10-5 солнечной массы в год. Вещество, перетекающее от звезды, вследствие, вращения системы обладает большим угловым моментом, поэтому частицы не смогут сразу упасть на черную дыру и “вынуждены” занять круговую орбиту, соответствующую имеющемуся у них угловому моменту.
В среднем порции газа требуется несколько недель или месяцев для того, чтобы упасть в черную дыру.
Таким образом, вокруг черной дыры образуется диск из аккрецирующего вещества (рис. 6). Плоскость этого диска совпадает с плоскостью, в которой движутся компоненты двойной системы, его диаметр составляет несколько миллионов километров, а толщина меньше 150000 км. Работа гравитационных сил частично превращается в кинетическую энергию движения газа, частично, из-за трения, переходит в тепло и разогревает аккрецирующий газ, который начинает интенсивно излучать рентгеновские лучи. Светимость диска может в сотни тысяч раз превосходить общую светимость Солнца, поэтому поиск черных дыр целесообразно вести, изучая мощные компактные космические источники рентгеновского излучения.
Лебедь Х-1 — черная дыра? Один из рентгеновских источников в двойных системах, расположенный в созвездии Лебедя и получивший название Лебедь Х-1, привлек к себе внимание. В 1971 г. в результате исследований этого источника на американском спутнике “Ухуру” и с помощью рентгеновских телескопов па высотных баллонах удалось с большой точностью установить его положение. В том же году были зарегистрированы изменения его рентгеновской светимости и одновременно с этим наблюдалось резкое возрастание излучения от радиоисточника, расположенного в этом же районе. Это позволило отождествить рентгеновский и радиоисточники и тем самым зафиксировать положение рентгеновского источника с точностью до угловой секунды. Внутри этой области была обнаружена горячая го лубая звезда HDE 226868, которая оказалась спектрально двойной, с периодом 5,6 суток. Позднее было обнаружено, что и излучение рентгеновского источника обладает периодической компонентой с таким же периодом. Тем самым было доказано, что рентгеновский источник входит в двойную систему вместе со звездой HDE 226868. Эта звезда расположена на расстоянии более 6500 световых лет от Солнца, имеет массу более 20 солнечных масс, а масса ее невидимого компаньона (источника рентгеновского излучения) оказалась более 8 масс Солнца. Поскольку эта масса существенно превышает предельную массу нейтронной звезды, то естественно предположить, что рентгеновский источник Лебедь Х-1 является черной дырой. Все, что нам известно об этом источнике, можно понять в рамках модели аккрецирующего диска вокруг черной дыры. Однако уникальность этого объекта и то огромное значение, которое имело бы для физики и астрофизики достоверное открытие первой черной дыры, заставляют астрофизиков относиться с огромной осторожностью к вынесению “окончательного приговора”. Можно надеяться, что в недалеком будущем после более тщательных и детальных исследований свойств этого объекта удастся полностью исключить другие мыслимые возможности, например, исключить возможность того, что Лебедь Х-1 является нейтронной звездой в тройной системе, и получить достоверное доказательство того, что первая черная дыра во Вселенной уже открыта.
Дополнительно
Технология выращивания сахарной свеклы в Сумской области
Сахарная свекла - важная техническая культура, корнеплод которой
достигает 500г и больше, содержит 19-22% сахара и более, является основным
сырьем для сахарной промышленности. Кроме сахара, в процессе переработки
корнеплодов получают ценные дополнительные продукты - мелясу и жом. Ботва
сахарной св ...
Шероховатость поверхности и её изображение на чертежах
КОНСТРУКЦИЯ
(объект производства)
ТЕХНОЛОГИЯ
(производственные
процессы)
↔
↔
↔
↑ ↑ ↑ ↑
↑ ↑ ↑
...