Методы средних баллов

В соответствии с методом средних арифметических рангов приведенные в таблице значения складываются по всем экспериментальным точкам (суммы приведены в четвертой снизу строке таблицы) и модели ранжируются в порядке возрастания суммы рангов. Итоговый ранг приведен в третьей снизу строке таблицы. Ранжировка по суммам рангов (или, что то же, по средним арифметическим рангам) имеет вид:

Б < М-К < {Л, Сол} < Д < Стеф < Г-Б < К . (3)

Поскольку модели Л и Сол получили одинаковую сумму баллов, то по рассматриваемому методу ранжирования они эквивалентны, а потому объединены в группу (кластер), т.е. ранжировка (2) имеет одну связь.

Медианы совокупностей из 12 рангов, соответствующих определенным моделям, приведены в предпоследней строке таблицы. (При этом медианы вычислены по обычным правилам статистики - как среднее арифметическое центральных членов вариационного ряда.) Итоговое упорядочение по методу медиан приведено в последней строке таблицы. Ранжировка по медианам имеет вид:

Б < {М-К, Л} < Сол < Д < Стеф < К <Г-Б . (4)

Поскольку модели Л и М-К имеют одинаковые медианы баллов, то по рассматриваемому методу ранжирования они эквивалентны, а потому объединены в группу (кластер), т.е. ранжировка (4) имеет одну связь.

Сравнение ранжировок (3) и (4) показывает их близость (похожесть). Можно принять, что модели М-К, Л, Сол упорядочены как М-К < Л < Сол, но из-за погрешностей статистических данных в одном методе признаны равноценными модели Л и Сол (ранжировка (3)), а в другом - модели М-К и Л (ранжировка (4)). Существенным является только расхождение, касающееся упорядочения моделей К и Г-Б: в ранжировке (3) Г-Б < К, а в ранжировке (4), наоборот, К < Г-Б. Однако эти модели - наименее точные из восьми рассматриваемых, и при выборе наиболее точных моделей для дальнейшего использования на указанное расхождение можно не обращать внимание.

Рассмотренный пример демонстрирует сходство и различие ранжировок, полученным по методу средних арифметических рангов и по методу медиана, а также пользу от их совместного применения.

Заключение

С 1973 г. работает неформальный научный коллектив вокруг научного семинара “Математические методы экспертных оценок и нечисловая статистика”, созданный в рамках секции "Планирование эксперимента" Научного Совета АН СССР по комплексной проблеме "Кибернетика" (сейчас название семинара - "Экспертные оценки и анализ данных"). Проведено много научных исследований, опубликованы десятки монографий и сборников, сотни статей. Существенная часть полученных результатов посвящена проблемам статистики объектов нечисловой природы и отражена в обзорах [1-3,37]. Однако не было стимулов стремиться к практическому внедрению теоретических исследований, разрабатывать методики и компьютерные системы.

В настоящее время ситуация изменилась. Возникла масса аналитических центров, которым разработки нашего научного коллектива явно полезны. Однако важно установить контакты между нами, теоретиками, и менеджерами аналитических центров, наладить систему обучения. Знания должны быть основой для компьютерных систем. В частности, мы разрабатываем Автоматизированное Рабочее Место “Математика для экспертизы” (АРМ МАТЭК) специалиста по проведению экспертных исследований [38].

Подводя итоги, можно сказать, что репрезентативная теория измерений (или репрезентационная, как предпочитает писать Ю.Н.Толстова) в состоянии дать рекомендации по выбору методов анализа статистических данных, измеренных в тех или иных шкалах, а потому является частью научного инструментария специалиста по математическим методам исследования.

Перейти на страницу: 1 2 

Дополнительно

Развитие представлений о природе тепловых явлений и свойств макросистем
Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдае­мые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Та­кие явления наз ...

Галактика как уровень мегамира
Актуальность, цели и задачи ответа по настоящей контрольной работе будут обусловлены следующими положениями. Нас интересует не только звездное население того дома, в котором мы живем. Нас интересует и архитектура этого дома и его размеры; интересует, как его обитатели расселены, где жилищная тесно ...

Меню сайта