Асимптотическая математическая статистика и практика анализа статистических данных
Как мы обычно подходим к обработке реальных данных в конкретной прикладной задаче? Первым делом строим статистическую модель. Если мы хотим перенести выводы с совокупности результатов наблюдений на более широкую совокупность, например, предсказать что-либо, то рассматриваем, как правило, вероятностно-статистическую модель. Например, традиционную модель выборки, в которой результаты наблюдений - реализации независимых (в совокупности) одинаково распределенных случайных величин. Очевидно, любая модель лишь приближенно соответствует реальности.
В частности, естественно ожидать, что распределения результатов наблюдений несколько отличаются друг от друга, а сами результаты связаны между собой, хотя и слабо. И эти ожидания во многих конкретных случаях оправдываются (в терминах конкретной прикладной ситуации см. об этом, например, в монографии [1]).
Итак, первый этап - переход от реальной ситуации к математической модели. Далее - неожиданность: на настоящем этапе своего развития математическая теория статистики зачастую не позволяет провести необходимые исследования для имеющихся объемов выборок. Более того, отдельные математики пытаются оправдать свой отрыв от практики соображениями о структуре этой теории, на первый взгляд убедительными. Неосторожная давняя фраза Б. В. Гнеденко и А. Н. Колмогорова: "Познавательная ценность теории вероятностей раскрывается только предельными теоремами" [2] взята на вооружение и более близкими к нам по времени авторами. Так, И. А. Ибрагимов и Р. З. Хасьминский пишут: "Решение неасимптотических задач оценивания, хотя и весьма важное само по себе, как правило, не может являться объектом достаточно общей математической теории. Более того, соответствующее решение часто зависит от конкретного типа распределения, объема выборки и т. д. Так, теория малых выборок из нормального закона будет отличаться от теории малых выборок из закона Пуассона" [3, с.7].
Согласно цитированным и подобным им авторам, основное содержание математической теории статистики - предельные теоремы, полученные в предположении, что объемы рассматриваемых выборок стремятся к бесконечности. Эти теоремы опираются на предельные соотношения теории вероятностей, типа Закона Больших Чисел и Центральной Предельной Теоремы. Ясно, что сами по себе подобные утверждения относятся к математике, т. е. к сфере чистой абстракции, и не могут быть непосредственно применены для анализа реальных данных. Их использование опирается на важное предположение: "При данном объеме выборки достаточно точными являются асимптотические формулы. "
Конечно, в качестве первого приближения представляется естественным воспользоваться асимптотическими формулами, не тратя сил на анализ их точности. Но это - лишь начало долгой цепи исследований. Как же обычно преодолевают разрыв между результатами асимптотической математической статистики и потребностями практики статистического анализа данных? Какие "подводные камни" подстерегают на этом пути? Обсуждению этих вопросов и посвящена настоящая статья.
Дополнительно
Солнце и его влияние на землю
Каждому
наверняка известно, что на Солнце нельзя смотреть невооруженным глазом, а тем
более в телескоп без специальных, очень темных светофильтров или других
устройств, ослабляющих свет. Пренебрегая этим советом, наблюдатель рискует
получить сильнейший ожог глаза. Самый простой способ рассматриват ...
Нетрадиционные методы производства энергии
Рождение энергетики
произошло несколько миллионов лет тому назад, когда люди научились использовать
огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма,
оружием против врагов и диких зверей, лечебным средством, помощником в
земледелии, консервантом продуктов, технологическ ...