Расчетная часть
Применив принцип Гюйгенса-Френеля (5.3), можно определить распре-деление светового поля в плоскости х2у2 перед фурье-объективом, а поле за ним - применив (5.2).
Таким образом, распределение поля в плоскости х3у3 анализа будет описываться :
, где - оператор Френеля для преобразования поля на i-м участке свободного пространства толщиной li.
Распределение поля в плоскости х2у2 за фурье-объективом, согласно (5.2) будет
, а подставив (5.6) в (5.7) с учетом (5.3), распределение поля в плоскости х3у3 анализа можно представить в виде :
,
где .
Учитывая (5.16) и (5.20) выражение (5.14) можно представить в виде:
(5.23),
откуда видно, что квадратичные фазовые искажения фурье-образа (5.14) сигнала устранимы не только при освещении входного транспаранта плос-кой, но и сферической волной при выполнении условий (5.18 ) и (5.22).
Выходной электрический сигнал ФИС представляет собой решение известной в оптике задачи о набегании светового пятна, распределение освещенности в котором описывается выражением:
, на узкую щеле-вую диафрагму вдоль координаты х3. Наиболее общим методом решения подобных задач является вычисление интеграла свертки функции освещенности с функцией пропускания полевой диафрагмы ФИС, равной:
(5.24), где - ширина щели вдоль координаты х3, - высота щели вдоль координаты у3.
Распределение комплексных амплитуд световой волны в плос-
кости х3у3 анализа КОС описывается выражением (5.23) и является прост-ранственно-частотным фурье-образом входного сигнала т.е.
.
Из уравнений Максвелла для электромагнитной волны следует, что энергия преносимая волной, пропорциональна квадрату амплитуды напря-женности электромагнитного поля, т.е.
(5.25), где К - постоянный коэфициент, зависящий от свойств среды, где распостраняется электромагнитная волна [14, 23]. Поэтому пространственно-частотный энергетический спектр входного сигнала пропорционален распределению освещенности в плоскости спектрального анализа КОС, т.е.
(5.26), где ,
- взаимосвязь между пространственными х(у) и пространственно-частотными координатами в плоскости спектрального анализа КОС; комплексная постоянная, определяемая (5.8).
Дополнительно
Нейросетевые методы распознавания изображений
Выполнен обзор нейросетевых методов, используемых при распознавании
изображений. Нейросетевые методы - это методы, базирующиеся на применении
различных типов нейронных сетей (НС). Основные направления применения различных
НС для распознавания образов и изображений:
применение для извлечение
...
Термоиндикаторы
Роль
температурных и тепловых измерений настолько велика, что в настоящее время без
них не может обойтись практически ни одна область знаний, ни одна отрасль
промышленности.
Каждый
из существующих способов измерения температуры имеет свои достоинства и
недостатки, поэтому выбор того или ин ...