Свойства ионизирующих излучений

Взаимодействие ионизирующих излучений с веществом.

В ве­ществе быстрые заряженные частицы взаимодействуют с элект­ронными оболочками и ядрами атомов. В результате взаимодей­ствия с быстрой заряженной частицей электрон получает до­полнительную энергию и переходит на один из удаленных от ядра энергетических уровней или совсем покидает атом. В первом случае происходит возбуждение, во втором — ионизация атома.

При прохождении вблизи атомного ядра быстрая частица испытывает торможение в его электрическом поле. Торможение заряженных частиц сопровождается испусканием квантов тормоз­ного рентгеновского излучения. Наконец, возможно упругое и неупругое соударение заряженных частиц с атомными ядрами.

Длина пробега частицы зависит от ее заряда, массы, началь­ной энергии, а также от свойств среды, в которой частица движется. Пробег увеличивается с возрастанием начальной энер­гии частицы и уменьшением плотности среды. При одинаковой начальной энергии массивные частицы обладают меньшими ско­ростями, чем легкие. Медленно движущиеся частицы взаимо­действуют с атомами более эффективно и быстрее растрачивают имеющуюся у них энергию.

Проникающую способность бета-частиц обычно характеризуют минимальной толщиной слоя вещества, полностью поглощающего все бета-частицы. Например, от потока бета-частиц, максималь­ная энергия которых 2 МэВ, полностью защищает слой алюминия толщиной 3,5 мм.

Альфа-частицы, обладающие значительно большей массой, чем бета-частицы, при столкновениях с электронами атомных обо­лочек испытывают очень небольшие отклонения от своего перво­начального направления и движутся почти прямолинейно. Про­беги альфа-частиц в веществе очень малы. Например, у альфа-частицы с энергией 4 МэВ длина пробега в воздухе примерно 2,5 см, в воде или в мягких тканях животных и человека — сотые доли миллиметра.

Благодаря небольшой проникающей способности альфа- и бета-излучения обычно не представляют большой опасности при внешнем облучении. Плотная одежда может поглотить значитель­ную часть бета-частиц и совсем не пропускает альфа-частицы. Однако при попадании внутрь человеческого организма с пищей, водой и воздухом или при загрязнении радиоактивными вещест­вами поверхности тела альфа- и бета-излучения могут причинить человеку серьезный вред.

Нейтроны, не имеющие электрического заряда, при движении в веществе не взаимодействуют с электронными оболочками атомов. При столкновениях с атомными ядрами они могут вы­бивать из них заряженные частицы, которые ионизируют и воз­буждают атомы среды.

Гамма-кванты взаимодействуют в основном с электронными оболочками атомов, передавая часть своей энергии электронам — это явления фотоэффекта (см. § 58), эффекта Комптона (см. § 63) или рождения электронно-позитронных пар (см. § 90). Во­зникающие быстрые электроны производят ионизацию атомов среды.

Пути пробега гамма-квантов и нейтронов в воздухе измеря­ются сотнями метров, в твердом веществе — десятками сантимет­ров и даже метрами. Проникающая способность гамма-излуче­ния увеличивается с ростом энергии гамма-квантов и умень­шается с увеличением плотности вещества-поглотителя. В табли­це 5 приведены в качестве примера значения толщины слоев воды, бетона и свинца, ослабляющих потоки гамма-излучения различ­ной энергии в десять раз.

Потоки гамма-квантов и нейтронов — наиболее проникающие виды ионизирующих излучений, поэтому при внешнем облучении они представляют для человека наибольшую опасность.

Поглощенная доза ионизирующего излучения.

Универсальной мерой воздействия любого вида излучения на вещество является поглощенная доза излучения, равная отношению энергии, передан­ной ионизирующим излучением веществу, к массе вещества:

D

=

E

/

m

За единицу поглощенной дозы в СИ принят грей (Гр). 1 Гр равен поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего из­лучения 1 Дж:

Перейти на страницу: 1 2 3 4

Дополнительно

Эволюция энергетических процессов у эубактерий
В главах 11 и 12 были обсуждены проблемы возникновения первичной клетки из гипотетической протоклетки и последующего пути прогрессивной эволюции первичной клетки. Как было обнаружено в 70-х гг., на раннем этапе этого пути могло произойти выделение трех основных ветвей, каждая из которых самостояте ...

Кибернетика и синергетика – науки о самоорганизующихся системах
Фронт современной науки простирается от сравнительно част­ных, конкретных концепций относительно различных областей физи­ческого и химического мира, до глубочайших теорий, охватывающих различные сферы природы, общества и технической деятельности че­ловека. К последним следует отнести кибернетику и ...

Меню сайта