Математическая модель измерительной системы
Оптическая система КОС, выполненная по схеме “входной транспарант перед фурье-объективом”, состоит из ряда последовательно расположен-ных вдоль оптической оси узлов: источник когерентного излучения, входной транспарант, фурье-объектив, фоторегистратор спектра (рис.2).
В такой системе, для получения высококонтрастного и сфокусирован-ного изображения исследуемого сигнала, источником когерентного излу-чения является точечный источник, излучаемое поле которого описывается функцией: (5.1), где А0-амплитуда световой волны источника; - дельта-функция Дирака. Кроме того, в оптике принято считать источник точечным, если его размеры в десять и более раз меньше растояния до оптической системы, что обычно всегда имеет место на практике для КОС.
Тогда, распределение поля в плоскости х1у1 согласно принципу Гюйгенса-Френеля, будет описываться выражением :
(5.3), где - оператор преобразования Френеля ; СФ- комплексная постоянная, равная . Если в плоскости х1у1 помещен пространственный транспарант с амплитудным коэфициентом пропускания , являюшийся записью исследуемого сигнала, то распределение поля за транспарантом может быть описано как
(5.2).
Применив принцип Гюйгенса-Френеля (5.3), можно определить распре-деление светового поля в плоскости х2у2 перед фурье-объективом, а поле за ним - применив (5.2).
Таким образом, распределение поля в плоскости х3у3 анализа будет описываться :
(5.4), где - оператор Френеля для преобразования поля на i-м участке свободного пространства толщиной li.
Рассмотрим последовательно распостранение когерентной световой волны в оптической системе КОС, представленной на рис. 2.
Подставив (5.1) в (5.3), определим распределение светового поля во входной плоскости х1у1 перед транспарантом
, где (5.5).
Выражение (5.5) получено с использованием фильтрующего свойства дельта-функции и описывает расходящуюся сферическую волну в плоскости х1у1 перед входным транспарантом в параксиальном приближении. Исполь-зование фильтрирующего свойства -функции допустимо в силу прост-ранственной инвариантности рассматриваемой параксиальной области оптической системы. Такое допущение обычно всегда имеет место на прак-тике, поскольку для уменшения влияния аберраций оптической системы на качество фурье-образа, используют лишь ее центральную часть - парак-сиальную область.
Определив распределение поля за входным транспарантом c ис-пользованием (5.2), поле во входной плоскости фурье-объектива, согласно принципу Гюйгенса-Френеля, можно представить как
Дополнительно
Лазерная медицинская установка для целей лучевой терапии Импульс-1
В настоящее
время лазерное излучение с большим или меньшим успехом применяется в различных
областях науки. Уникальные свойства излучения лазеров, такие, как монохроматичность,
когерентность, малая расходимость и возможность при фокусировке получать очень
высокую плотность мощности на облучаемой по ...
Австрийская школа и теория предельной полезности
“Австрийская школа” возникла в 70-х годах 19-в.,
которые характеризовались дальнейшим ростом капитализма и обострением его
противоречий. На основе растущей концентрации производства в 70-х годах начали
возникать первые кап. монополии. Австрийская школа оспаривала учение Маркса, и
в авангарде этог ...