Расслоенные пространства внутренних степеней свободы
где - безразмерная постоянная,
– диэлектрическая проницаемость. Она является безразмерной величиной. Если же среда анизотропная, то диэлектрическую проницаемость могли составлять величины
. Ограничимся классом решений
, где
, то есть
. Тогда одним из решений данного уравнения будет являться функция
Построим функцию следующим образом:
, где
.
Тогда нелинейные дифференциальные уравнение для L и F2 представляется в форме:
Каждое дифференциальное уравнение индуцирует соответствующей структуры пространство [ 3 ]. В данном случае решение дифференциального уравнения сводится к поиску геометрических структур данного пространства
.
Введем обозначение
В выделенном классе решений получаем следующие дифференциальные уравнения слоевых координат пространства :
Имеем и следующие значения слоевых координат (составляющие ковариантного вектора ):
,
где
.
Проверим правильность нахождения векторов . Должно иметь силу соотношение
. Имеем
Составляющие определены правильно.
В рассматриваемом классе решений получаем следующие нелинейные дифференциальные уравнения для составляющих метрического тензора :
.
Тогда составляющие коэффициентов связностей находится по формулам:
В итоге получаем составляющие метрического тензора
И составляющие коэффициентов связностей:
,
,
.
Проверка правильности найденных составляющих метрического тензора производится традиционным способом, а именно, в выражение следует подставить конкретные значения для составляющих метрического тензора и получить квадрат метрической функции. Подстановка в данное выражение найденных здесь составляющих метрического тензора приводит
Дополнительно
Методы оценки близости допредельных и предельных распределений статистик
Рассматривается проблема оценки близости предельных
распределений статистик и распределений, соответствующих конечным объемам
выборок. При каких объемах выборок уже можно пользоваться предельными
распределениями? Каков точный смысл термина "можно" в предыдущей фразе?
Основное внимание уд ...